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Abstract. A theoretical investigation of the quantum noise in the light reflected by a microcavity
containing a semiconductor quantum well is presented. Squeezing is predicted when scattering
processes have a low efficiency. Exciton–phonon scattering is shown to destroy the non-classical
effects and to yield excess noise in the output field.

1. Introduction

In recent years, the optical properties of microcavities containing semiconductor quantum wells
have been the subject of detailed investigations. Up to now interest has been focused mostly
on the spectral properties of the reflected, transmitted and emitted light, and on non-linear
optical properties [1]. Quantum properties of the reflected or emitted light have been much
less studied. Quantum effects such as squeezing and antibunching of the outgoing light have
been predicted and observed in microcavities containing atoms [2]. Because of the similarities
between atomic and excitonic resonances, it can be argued that a semiconductor microcavity
should also give rise to such effects. Two main features are necessary: first, modifying the
quantum statistical properties of light requires a coherent non-linearity in the system; second,
the non-classical features must not be destroyed by spurious fluctuations linked to the relaxation
processes present in semiconductors. In spite of numerous non-radiative relaxation processes
that cause a fast decay of coherences, semiconductors have already been shown to exhibit
coherent non-linear effects [3], such as the dynamical Stark shift [4]. Furthermore, recent
experiments have demonstrated the possibility of modifying the quantum fluctuations and of
generating squeezing in semiconductors [5].

In this paper, we present a theoretical study of the quantum fluctuations of the light going
out of a microcavity containing one semiconductor quantum well. Our model assumes a non-
linearity arising from the exciton–exciton interaction [6]. In contrast to previous treatments [7],
we consider incoming fluctuations that are not only zero-point fluctuations, but also fluctuations
related to the existing relaxation processes, as required by the fluctuation-dissipation theorem.
Calculations are performed using realistic parameters found in the present-day state-of-the-art
semiconductor microcavities. We show that at low temperature when interaction with phonons
is small, reduction of the quantum fluctuations of the reflected light is expected.

Engineering of the quantum fluctuations of light in semiconductor materials would
open the way to compact quantum devices, such as noiseless sources of light, thresholdless
lasers or highly efficient all-optical switches. The understanding of quantum properties of
semiconductor microcavities is thus of great importance.
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2. The model

We consider a microcavity containing a semiconductor quantum well embedded between two
highly reflecting planar mirrors separated by a distance of the order of the wavelength. The
discussion is limited to a two-band semiconductor. The electromagnetic field can excite an
electron from the filled valence band to the conduction band, thereby creating a hole in the
valence band. The electron–hole system possesses bound states, the excitonic states. We will
only consider the lowest of these bound states, the 1s state.

Neglecting the spin degrees of freedom, we can write an effective interaction Hamiltonian
for the coupled exciton–photon system in the cavity as [6,8,9]

H =
∑
k

h̄ωkâ
†
k âk +

∑
K

h̄ωKb̂
†
Kb̂K +

∑
k

h̄gk(â
†
k b̂k + b̂†

k âk)

+
∑
K,K ′

∑
Q

h̄αKK ′Qb̂
†
Kb̂

†
K ′ b̂K+Qb̂K ′−Q

+

(∑
K,K ′

∑
Q

h̄α′KK ′Qb̂
†
Kb̂

†
K ′ b̂K+QâK ′−Q + h.c.

)
+
∑
KK ′

βKK ′ b̂
†
Kb̂K ′(ĉK−K ′ + ĉ

†
K ′−K) +

(∑
kj

γkj â
†
k τ̂j + h.c.

)
. (1)

As the exciton and photon modes are quantized along the direction normal to the
microcavity, we consider the lowest-order mode in this direction, and the sums overk and
K run for the momenta in the cavity plane only. The first two terms correspond to the energies
of the photons and of the excitons, whereâk andb̂K are respectively the annihilation operators
of a photon of in-plane momentumk and of an exciton of in-plane momentumK, andωk andωK
are the frequencies of the corresponding cavity and exciton modes. The third term corresponds
to the exciton–photon coupling with a strengthgk. Due to the translational invariance in the
plane of the semiconductor layers, excitons with a wave vectorK in this plane can only be
coupled with light having an equal in-plane wave vectork = K.

The term in the second line describes the exciton–exciton scattering due to Coulomb
interaction, while the term in the third line represents the saturation of the photon–exciton
interaction. The first term in the fourth line describes the exciton–phonon scattering, where
ĉQ is the phonon annihilation operator. The second term represents the coupling between the
electromagnetic field modes inside the cavity,âk, and outside the cavity,̂τj , the latter being
considered as a reservoir.

We deal with the case of only one photon mode irradiating the microcavity, for which we
will assumek = 0. Because of the in-plane momentum conservation in the exciton–photon
interaction, this cavity mode is only coupled with one exciton mode ofK = 0. We will be
interested in the case of strong coupling between excitons and photons in this mode, which
leads to remarkable properties of microcavities [10]. All of the other exciton modes form a
reservoir that is weakly coupled to the mode of interest.

The interaction between the exciton and the photon modes of interest can then be modelled
by the coupling of two harmonic oscillators, together with an excitonic non-linearity coming
from the terms in the second line of equation (1) withK = K ′ = Q = 0. The Hamiltonian of
the coupled system can be written as

H = h̄ωcavâ†â + h̄ωexcb̂
†b̂ + h̄g(â†b̂ + b̂†â) + h̄αb̂†b̂†b̂b̂ +Hrel. (2)

The non-linear term describing saturation effects will not be treated here. It can be shown
that it gives rise to small corrections as compared to the previous one [11]. The termHrel
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contains all of the other terms of equation (1) and gives rise to relaxation of the main exciton
and photon modes. The quantum theory of damping can then be used to derive the dissipation
terms and fluctuation terms associated withHrel [12,13].

The problem of the determination of the quantum optical properties of the outgoing field
has some similarities with the one of a cavity containing atoms. The squeezing properties of the
field going out of a cavity containing atoms in the strong-coupling regime were investigated in
reference [14]. Here we will compute the squeezing spectra of the output field of a microcavity
containing excitons, for which the non-linearity is different from the atomic one. This case
was not investigated in detail previously. Moreover, we will study the effect of the presence
of a thermal reservoir of phonons coupled to the system.

The microcavity is irradiated by a coherent field from a laser of frequencyωL. One mirror
of the microcavity is perfectly reflecting, whereas the other one, having a small non-zero
transmission coefficient, is the coupling mirror, through which the light is coupled in and out.
Including relaxation processes, one can derive from the Hamiltonian (2) evolution equations
for the time-dependent electromagnetic field and exciton field operators inside the cavity:

dâ

dt
= −(γa + iδa)â − igb̂ +

√
2γaa

in (3)

db̂

dt
= −(γb + iδb)b̂ − igâ − 2iαb̂†b̂b̂ +

√
2γbb

in (4)

wheret is a dimensionless time normalized to the round-trip timeτc in the cavity,γa andγb are
the dimensionless decay constants of the cavity field and of the exciton, i.e. the cavity field and
exciton decay rates normalized to 1/τc, δa = (ωcav − ωL)τc andδb = (ωexc − ωL)τc are the
dimensionless detunings of the cavity and of the exciton from the frequencyωL of the incoming
laser field. The exciton-to-photon coupling constantg and the non-linear coupling constantα
have also been normalized to 1/τc. The fieldsâin and b̂in are the incoming electromagnetic
and exciton fields, the characteristics of which will be discussed below.

The relaxation of the field in the cavity is related to the last term in equation (1). The
decay constantγa is linked to the amplitude reflection coefficientr of the coupling mirror by
r = 1−γa. Since the cavity has a high finesse,r is close to 1, which implies that the amplitude
transmission coefficientt is much smaller than 1 and verifiest = √2γa.

We will solve the problem in the framework of the input–output formalism [15] where
the evolution of the fields for the electromagnetic and exciton modes is computed using equ-
ations (3), (4) while the output field is related to the intracavity and input fields by

âout =
√

2γaâ − âin. (5)

Equation (5) indicates that the outgoing field is the sum of the inside field transmitted
through the coupling mirror and of the input field reflected by the mirror (the reflection
coefficientr has been replaced by 1 in this equation).

The relaxation of the exciton is due to exciton–exciton scattering represented by the
terms of the second line of equation (1) and to scattering of excitons by acoustic phonons
represented by the first term in the fourth line of equation (1). The first process is a
density-dependent process, while the second one is mainly sensitive to temperature. At low
enough temperature and with good-quality samples, we assume that we can neglect all other
relaxation processes. The contribution of these two processes to the decay constantγb can
be calculated from the interaction Hamiltonian [16, 17]. Let us note that the electron–hole
radiative recombination, occurring only with photons havingk = K, is accounted for by the
cavity–exciton coupling term.

Equations (3), (4) can be considered as Langevin equations for the two fields, where
the fluctuating parts of the terms

√
2γaain and

√
2γbbin are the Langevin forces associated
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with the reservoirs for the electromagnetic field and for the excitons. The minimal values of
these fluctuating terms correspond to the zero-point fluctuations (or vacuum fields) imposed by
quantum mechanics. Additional fluctuations may arise from the specific scattering processes.
While non-classical optical effects have been predicted by several authors in the case of vacuum
incoming fluctuations [7], we evaluate the squeezing and modifications of quantum fluctuations
when incoming fluctuations related to actual dissipation processes are included. As a model
case, we will concentrate on the fluctuations coming from phonon scattering.

The incoming electromagnetic field is the laser coherent field, which is a classical
field together with quantum fluctuations equal to the vacuum fluctuations. Thus we have
âin = ain + δâin whereain is the classical mean value of the field and its fluctuationsδâin have
a zero mean value. The only non-zero correlation function of the fluctuations is

〈δâin(t) δâin†(t ′)〉 = δ(t − t ′). (6)

The exciton field inside the cavity is coupled with a fluctuating fieldb̂in = δb̂in that has
several contributions associated with the various relaxation processes. Here, we will only
consider the term coming from phonon scattering, which can be treated as the coupling with a
thermal bath, as shown below. The fluctuating terms associated with exciton–exciton scattering
and their correlation functions have been computed in reference [13]. Their contribution to
the output noise can be calculated from [18]. It is usually smaller than the one coming from
exciton–phonon scattering and will be treated elsewhere.

As can be seen from the first term in the third line of equation (1) describing exciton–
phonon scattering, an exciton in the mode of interestb is annihilated while an exciton in another
mode is created and a phonon is created or annihilated, the energy and momentum conservation
being ensured by the phonon. This term can be treated by considering that the excitons interact
with a thermal bath [13,19], the temperature of which depends on the experimental conditions.
The only two non-zero correlation functions are then given by

〈δb̂in(t) δb̂in†(t ′)〉 = (1 + 〈n〉)δ(t − t ′) (7)

〈δb̂in†(t) δb̂in(t ′)〉 = 〈n〉δ(t − t ′). (8)

〈n〉 is the mean number of excitations in the thermal bath. We assume that the phonon-
mediated coupling of the excitonb-mode occurs mainly with the ensemble of non-radiative
excitons whose energies differ from the energy of the mode studied by an energy of the order of
the vacuum Rabi splitting1E [20,21]. The phonons capable of matching the energy difference
1E have a mean occupation number

〈n〉 = 1

e1E/kT − 1
. (9)

At zero temperatureT = 0 we have〈n〉 = 0. The only non-zero correlation function is
given by equation (7) and corresponds to zero-point fluctuations of the system.

To calculate the fluctuations of the outgoing light field, we will linearize equations (2), (3)
in the vicinity of the operating point. To do so, we first compute the mean values of the fields.

3. Mean fields

In order to study the mean values of the electromagnetic and excitonic fields, we rewrite
equations (3), (4) for classical values of the field, removing the fluctuating terms, and we solve
them in the steady-state regime (da/dt = db/dt = 0). The equations are

(γa + iδa)a + igb =
√

2γaa
in (10)

(γb + iδb)b + iga = 2iαb∗b2. (11)
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In the linear case (α = 0), they yield simple analytical expressions for the mean intensitiesIa
andIb of the fields:

Ia

I in
= 2γa(γ 2

b + δ2
b)

(g2 + γaγb − δaδb)2 + (γaδb + γbδa)2
(12)

Ib

I in
= 2γag2

(g2 + γaγb − δaδb)2 + (γaδb + γbδa)2
(13)

whereI in = |ain|2 is the incoming laser field intensity. The intensityI out of the reflected field

aout =
√

2γaa − ain (14)

is given by

I out

I in
= (g2 − γaγb − δaδb)2 + (γaδb − γbδa)2
(g2 + γaγb − δaδb)2 + (γaδb + γbδa)2

. (15)

This enables us to calculate the reflectivityR and absorptionA = 1− R of the microcavity.
The absorption is found to be proportional to the excitonic field intensity:

Ib

I in
= A

2γb
. (16)

Thus the absorption spectrum of the microcavity gives direct access to the variation ofIb with
the laser frequency. When the exciton and cavity are in resonance (δa = δb), the degeneracy
is lifted due to the strong coupling, and the field intensities have two symmetrical peaks. The
energy difference between the two peaks yields the vacuum Rabi splitting for the intracavity
field,1a, and for the absorption,1b:

1a = 2
√
g
√
g2 + 2γb(γa + γb)− γ 2

b (17)

1b = 2

√
g2 − γ

2
a + γ 2

b

2
. (18)

When non-linear processes are taken into account, there is no simple analytical expression
for the field intensities. However, it is possible to write the incoming field intensity as a function
of the excitonic field intensity:

I in = 1

2γa

(g2 − δaδb + γaγb − αγaIb)2 + (γaδb + γbδa − δaαIb)2
g2

Ib. (19)

This expression would lead to bistability for high enough values of the non-linearity. However,
this has never been observed experimentally, and the corresponding situation is unrealistic since
it occurs with excitations for which higher-order effects in the exciton–exciton interaction take
place. Actually experiments showed that in such cases, the bleaching of the oscillator strength
causes the strong-coupling effect to disappear [22,23].

The intracavity electromagnetic field intensities will be expressed in units of a ‘saturating’
intensityI0. I0 is defined as the intracavity electromagnetic intensity yielding a density of
excitons of 109 excitons cm−2 over the active area of 0.1 mm2 in the absence of non-linear
effects. The latter value is usually considered as the limit of the low-density case [22], where our
treatment is expected to be valid. The non-linear coefficientα was evaluated from reference [6]
to be 1.5× 10−9 for an active area of 0.1 mm2.

Figure 1 shows the variation of the intracavity electromagnetic field intensity (a) and the
excitonic field intensity (b) with laser detuning when the exciton and cavity are in resonance:
δa = δb. We have taken equal cavity and exciton widths,γa = γb = 0.05g. The photon–
exciton coupling coefficientg is equal to 2×10−2 in units of the inverse round-trip time in the
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Figure 1. IntensitiesIa of the cavity mode (a) andIb of the exciton mode (b) as functions of the
laser detuningδ (normalized tog), when the cavity is resonant with the exciton. The parameters
are as follows:γa = γb = 0.05g, 2α = 1.5× 10−9, Im = 0.5I0.

microcavity, 2α = 1.5× 10−9, and the intracavity intensity in the absence of non-linearity is
Im = 0.5I0. The heights of the two maxima are slightly different, but the shape of the curve is
quite compatible with experimental observations. For the calculation of the squeezing effects,
we will focus on such cases of weak non-linear effects, in which the peaks are not changed
from their shapes in the absence of non-linearity.

0.1

0.2

0.3

1-1-2 2-1 1 2

0.2

0.4

0.6

0.8

1

δ/g δ/g

Ia/I0 Ib/I0
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(b)

Figure 2. IntensitiesIa of the cavity mode (a) andIb of the exciton mode (b) as functions of the
laser detuningδa from the cavity (normalized tog), when the cavity–exciton detuning isδa−δb = g.

In figure 2, we show the variation of the intracavity electromagnetic field (a) and the
excitonic field intensity (b) with the same values of the parameters as above and away from
cavity–exciton resonance(δb − δa = g), as functions ofδ = δa. The exciton-like peak of the
cavity field corresponds to the left-hand-side peak of figure 2(a), whereas the cavity-like peak
corresponds to the right-hand-side peak.
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4. Quantum fluctuations and squeezing spectra

We deal with electromagnetic and exciton fields that have large average values compared with
the fluctuations. We then write

â(t) = a0 + δâ(t) (20)

b̂(t) = b0 + δb̂(t) (21)

wherea0 andb0 are the classical mean values derived in the previous section andδâ(t) and
δb̂(t) are the quantum fluctuations of the field inside the cavity that we want to determine.

We use the Fourier transforms of the fluctuations defined as

δâ(ω) =
∫
δâ(t)eiωt dt (22)

δâ†(ω) =
∫
δâ†(t)eiωt dt (23)

whereω is a dimensionless frequency normalized to the inverse round-trip time in the cavity.
The frequenciesω over which the fields and their fluctuations vary appreciably are of the order
of the relaxation rates and of the exciton–photon coupling rateg, which are much smaller than
the optical frequencyωL. We linearize equations (3), (4) and we take their Fourier transform
according to equations (22), (23). This allows us to replace the differential equations (3), (4)
by linear algebraic equations.

The squeezing spectra, which can be easily measured in the outgoing light with a radio-
frequency spectrum analyser connected to photodetectors, are directly related to the solutions of
the linearized equations in the frequency domainδâout(ω) andδâout†(ω). Indeed experiments
allow us to measure the fluctuations of the output electric field in a quadrature defined by an
angleθ with respect to some phase reference:

δx̂out
θ (ω) = e−iθ δâout(ω) + eiθ δâout†(ω) (24)

and the measured spectra are given by

Sθ (ω) = 〈δx̂out
θ (ω) δx̂out

θ (ω)〉. (25)

The details of the calculation have been published elsewhere [26]. We will concentrate
here on the physical interpretation of the results. For any given cavity–exciton detuning, the
spectra can be calculated either for a fixed laser detuning as a function of the fluctuation
frequencyω, or at a fixed value ofω as a function of the laser detuning. As the second case
is better suited to the experimental conditions, we will show the calculated spectra forω = 0
as a function of the laser detuning. Spectra will be shown in two cases: ‘optimum’ squeezing
spectra, for whichθ is adjusted at each point in such a way that it gives the minimal amount
of noise and intensity squeezing spectra for which the quantum fluctuations are calculated for
the amplitude quadrature of the output field.

Figure 3 shows a set of optimum squeezing spectra (left) and intensity squeezing spectra
(right) atω = 0, as a function of the laser frequencyδ, for cavity–exciton resonance(δa = δb),
with γa, γb, g andIm as in figure 2 and three different situations corresponding to increasing
temperatures: (a) at zero temperature,〈n〉 = 0, (b) 〈n〉 = 0.2, (c) 〈n〉 = 1. It can be seen
that a squeezing of about 30% is predicted in the absence of phonon scattering, even with
the low values of the non-linearity that have been assumed. Squeezing is observable on the
intensity, even though it is lower than the optimum squeezing. Excess noise observed on
the intensity is the counterpart of squeezing: quantum fluctuations can only be reduced in
some quadrature if they are increased in another quadrature. In the presence of small phonon
interaction, squeezing can still be observed, but tends to disappear rapidly as〈n〉 increases.
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Figure 3. Optimum squeezingSopt and intensity squeezingSI (calculated at zero-noise frequency)
as functions of the laser detuningδ (normalized tog), when the cavity is resonant with the exciton
for the parameters of figure 1. The standard quantum noise corresponds toS = 0; perfect squeezing
corresponds toS = −1. Curves (a), (b) and (c) correspond respectively to mean phonon numbers
〈n〉 = 0, 0.2 and 1.

The coupling to a thermal bath brings additional fluctuations into the system that appear as
excess noise on the output field. This excess noise is detrimental to the observation of quantum
effects. However, it is expected that the study of this noise can provide interesting information
on the relaxation processes in the semiconductor microcavity.

Figure 4 gives the same spectra as figure 3, but for a non-zero exciton–cavity detuning
(δa − δb = g) as a function ofδ = δa. It can first be seen that at zero temperature, squeezing
appears mostly on the cavity peak. On the other hand, excess noise is largest on the exciton
peak.

These curves have been calculated for excitonic densities of the order of 109 cm−2, with one
quantum well in the microcavity. With lower densities, the predicted squeezing scales down
with the non-linear phase shift. On the other hand, if one wants to increase the squeezing, it
may be difficult to increase the excitonic density because density-dependent relaxation effects
neglected here will come into play. By increasing the number of quantum wells in the cavity, it
is however possible to increase the non-linear phase shift while keeping the excitonic density
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Figure 4. Optimum squeezingSopt and intensity squeezingSI (calculated at zero frequency) as
functions of the laser detuningδa from the cavity (normalized tog), for the parameters of figure 2,
when the cavity–exciton detuningδa− δb = g. The standard quantum noise corresponds toS = 0;
perfect squeezing corresponds toS = −1. Curves (a), (b) and (c) correspond respectively to mean
phonon numbers〈n〉 = 0, 0.2 and 1.

constant in each quantum well.
These results show that quantum effects should be observed in semiconductor micro-

cavities at low temperature or in a system decoupled from the phonons. The decoupling of
the lower polariton branch from relaxation has been predicted [16,24] and observed in recent
experiments [25] and indicates good prospects for such experiments.

The exploration of the noise should thus provide an interesting insight into the various
effects that are involved in the build-up and the destruction of quantum features. In order to
predict the expected phenomena accurately, a more elaborate model for the relaxation of the
polariton is needed to deal with the case in which the two polariton branches are coupled in a
different way to the phonons and to other excitons.
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